AE6170 Structural Optimization

Prerequisites: Graduate Standing and/or Consent of Instructor

Course Listing: Mathematical methods of constrained optimization, sensitivity analysis, approximation concepts, decomposition techniques, shape optimization in the context of structural design.

1. Mathematical Statement of the Structural Optimization Problem (1 hour)

Definition and classification of constraints Solution process Analysis and design formulations

2. Classical Optimization Using Calculus of Variations (3 hours)

Applications to beams of maximum strength Columns and vibrating structures

3. Linear Programming, Simplex Method, Duality (5 hours)

Application to limit design of trusses and frames

4. Nonlinear Optimization - Use of Linear Programming for Solving (Nonlinear) Structural Optimization
Problems (5 hours)
Separable programming
Stewart and Griffith's method

Kelley's cutting plane method

5. Unconstrained Optimization as a Prelude to Nonlinear Constrained Optimization (6 hours)

Conjugate directions method Gradient methods

6. Kuhn-Tucker Conditions for Optimality (2 hours)

Computations of Lagrange multipliers

7. Gradient Projection and Reduced Gradient Methods (2 hours)

Applications to solving structural optimization problems

8. Method of Feasible Directions (5 hours)

Applications to solving structural optimization problems

9. Penalty Method - Exterior and Interior Penalty Functions (2 hours)

Quadratic and cubic extended penalty functions Use of SUMT (Fiacco-McCormack's sequential unconstrained minimization technique) for solving structural optimization problems

10. Introduction to Generalized Optimality Criteria and Dual Methods (4 hours)

Connection between optimality criteria and mathematical programming

11. Sensitivity Analysis (7 hours)

Direct and adjoint methods for sensitivity derivatives Approximation concepts

12. Recent Developments in Multilevel and Decomposition Techniques (3 hours)

13. Shape Optimization (4 hours)

Midterm Exam (1 hour) Total (45 hours)

Ref: Elements of Structural Optimization by R. Hafta, Z. Gurdal & M.P. Kamat

Structural Optimization: Status & Promise, Ed. M.P. Kamat