Course Syllabus

First graduate-level astrodynamics class that includes two-body orbital mechanics, orbit determination, orbit prediction, orbital maneuvers, lunar and interplanetary trajectories, orbital rendezvous and space navigation.

1. Course Introduction (1 hr.)

- 2. Orbital Mechanics (4 hrs.)
 - 2.1 Newton's law of gravitation and the N-body problem
 - 2.2 Two-body problem
 - 2.3 Conic sections
 - 2.4 Elliptical, circular, Parabolic and hyperbolic orbit properties
- 3. Orbit Determination (10 hrs.)
 - 3.1 Coordinate systems and transformations
 - 3.2 Classical orbital elements
 - 3.3 Orbital elements to and from position and velocity
 - 3.4 The measurement of time
 - 3.5 Orbit determination from three observations (Gibbs method)
 - 3.6 Ground tracks
 - 3.7 Oblateness effects on low-altitude orbits
 - 3.8 Sun-synchronous, eclipsing and Molynia orbits
- 4. Orbital Maneuvers (2 hrs.)
 - 4.1 Orbital transfer and energy changes
 - 4.2 Orbital plane change
- 5. Kepler's Problem: Time of Flight (4 hrs.)
 - 5.1 Kepler's time of flight problem; Mean and eccentric anomaly
 - 5.2 Universal variables
 - 5.3 Universal variable formulation of Kepler's time of flight problem
- 6. Gauss' Problem: Intercept & Rendezvous (4 hrs.)
 - 6.1 Gauss' problem

- 6.4 Practical Applications of Gauss' problem: Mission Design, Rendezvous/Intercept
- 7. Interplanetary & Lunar Trajectories (11 hrs.)
 - 7.1 Phase angle and synodic period
 - 7.2 Patched conic approximation for interplanetary transfer
 - 7.3 Gravity assist trajectories
 - 7.4 The Earth-Moon system and simple lunar transfers
 - 7.5 General lunar transfers and the patched conic approximation
 - 7.6 Lunar free-return trajectories
 - 7.7 The restricted 3-body problem as applied to lunar transfer
- 8. Special Topics (5 hrs.)
 - 8.1 Orbital rendezvous
 - 8.2 Space navigation

^{*4} hours reserved for in-class midterms and 2 days lost to semester breaks