AE 2610 – Introduction to Experimental Methods in Aerospace

Hours: 0-3-1

CATALOG DESCRIPTION: Introduction to laboratory instrumentation and measurement techniques used in aerospace. Basic application of sensor principles, uncertainty analysis, interpretation and analysis of experimental data, and documentation.

PREREQUISITES:

AE 1601 Intro. to AE With concurrency PHYSICS 2212 Physics II MATH 2551 Multivariable Calculus COE 2001 Statics Corequisite AE 2611 Technical Communications

COURSE OBJECTIVES:

1) Exposure to laboratory instrumentation and experimental measurement techniques commonly utilized in aerospace engineering;

2) introduction to fundamental principles governing common sensors, transducers and actuators, and modes of operation;

3) basic application of digital data acquisition, uncertainty analysis, and experimental data analysis and interpretation;

4) exposure to basic concepts in aerodynamics, deformable bodies, and system dynamics through experiments.

LEARNING OUTCOMES:

Students will have a basic ability to:

- 1. Apply experimental uncertainty analysis (confidence levels, error estimation)
- 2. Document test conditions/procedures
- 3. Analyze and graph data
- 4. Effectively use digital data acquisition approaches
- 5. Use and understand the operation of basic sensors, transducers, actuators
- 6. Apply critical reasoning and strategic thinking to experimental problems
- 7. Work in teams

Students will have an exposure level understanding of:

- 8. Validating an experimental system
- 9. Lab safety

TOPICAL OUTLINE:

	Topics	Weeks
1.	Course Overview and Introduction to Experiments	1
2.	Stress/Strain Measurements and Strain Gauges	3
	• Lab safety	
	• Mechanical transducers: strain gauge, extensometer, load cell	
	• Tensile testing and load frames	
	• Data analysis: stress, strain and material behavior	
3.	Aerodynamic Forces on a Wing in a Subsonic Windtunnel	3
	• Lab safety	
	• Measurements: use of sting balance, pitot-static probes	

- Operation of a wind tunnel
- Experimental decision making
- Data analysis: lift and drag drag polars; moments
- Uncertainty analysis
- 4. Dynamic Response of a 3-DOF Helicopter Model
 - Lab safety
 - Measurements and dynamic response of helicopter model: damped response and step inputs

3

3

- Optical shaft encoders
- Calibration
- 5. Combustion Dynamics in a Rijke Tube
 - Labe safety
 - Resonance, mode frequencies and shapes, feedback
 - Piezoelectric pressure transducers, rotameters, photomultiplier tubes
 - Frequency analysis