AE 4532 – Spacecraft Flight Dynamics

Hours: 3-0-3

CATALOG DESCRIPTION:

Cover fundamental material in orbit and attitude dynamics. Investigate orbits, rendezvous / intercept maneuvers, interplanetary transfers, attitude coordinates, attitude stability, attitude control, and attitude estimation.

PREREQUISITES:

AE 3530 System Dynamics and Vibrations

AE 3330 Introduction to Aerospace Vehicle Performance

COURSE OBJECTIVES:

- 1. Formulation and Numerical Solution of Flight Dynamics Equations of Motion
- 2. Understanding of Static and Dynamic Stability of Aerospace Systems
- 3. Familiarity with Space Mission Design (Intercept, Rendezvous, Interplanetary & Lunar Transfers, Gravity Assist, Formation / Constellation Design)
- 4. Formulation of relative motion dynamics
- 5. Introduced to GNSS systems
- 6. Introduced to Atmospheric Entry
- 7. Understanding of Kinematics and Dynamics of a 3D Rigid Body
- 8. Introduced to attitude determination and control instruments & techniques

LEARNING OUTCOMES:

- 1. Generate kinematics and dynamics solutions to problems
- 2. Mission/trajectory design
- 3. Spacecraft attitude system design
- 4. Applied programming in MATLAB
- 5. Constructing simulations in SIMULINK

TOPICAL OUTLINE:	HOURS
Introduction	1
Vectors, reference frames, and kinematics	1
Review of Newton's law of gravitation, N-body problem, two-body problem	1
Kepler's Equation and Time-of-Flight	2
Gauss' Problem: Intercept & Rendezvous Mission Design (p-iteration)	5
Interplanetary and Lunar Transfers (Patched Conics, Gravity assist, Free-return)	5
Relative Motion	2
GNSS Overview	2
Spacecraft Constellation and Formation Overview	2
Subtot	al: 21
Attitude parameterizations	2
Attitude Kinematics	1
Attitude Dynamics	3
Attitude Stability (spin, dual-spin, 3-axis, gravity gradient)	4
Attitude control mechanisms	4
Attitude control of spinning and non-spinning spacecraft, yo-yo	2
Spacecraft attitude control design	2
Attitude sensors (rate gyros, sun sensors, star trackers, magnetometers)	3
Subtot	al: 21
Midterm Exam and Quizzes (3 / +0)	3
0.1.	1.0

Subtotal: 3

Cumulative Total: 45