AE 4532 - Spacecraft Flight Dynamics

Hours: 3-0-3

Catalog Description:

Cover fundamental material in orbit and attitude dynamics. Investigate orbits, rendezvous / intercept maneuvers, interplanetary transfers, attitude coordinates, attitude stability, attitude control, and attitude estimation.

Prerequisites:

AE 3530 System Dynamics and Vibrations
AE 3330 Introduction to Aerospace Vehicle Performance

Course Objectives:

1. Formulation and Numerical Solution of Flight Dynamics Equations of Motion
2. Understanding of Static and Dynamic Stability of Aerospace Systems
3. Familiarity with Space Mission Design (Intercept, Rendezvous, Interplanetary \& Lunar Transfers, Gravity Assist, Formation / Constellation Design)
4. Formulation of relative motion dynamics
5. Introduced to GNSS systems
6. Introduced to Atmospheric Entry
7. Understanding of Kinematics and Dynamics of a 3D Rigid Body
8. Introduced to attitude determination and control instruments \& techniques

Learning Outcomes:

1. Generate kinematics and dynamics solutions to problems
2. Mission/trajectory design
3. Spacecraft attitude system design
4. Applied programming in MATLAB
5. Constructing simulations in SIMULINK

TopICAL OUTLINE:	HOURS
Introduction	$\mathbf{1}$
Vectors, reference frames, and kinematics	$\mathbf{1}$
Review of Newton's law of gravitation, N-body problem, two-body problem	$\mathbf{1}$
Kepler's Equation and Time-of-Flight	$\mathbf{2}$
Gauss' Problem: Intercept \& Rendezvous Mission Design (p-iteration)	$\mathbf{5}$
Interplanetary and Lunar Transfers (Patched Conics, Gravity assist, Free-return)	$\mathbf{5}$
Relative Motion	$\mathbf{2}$
GNSS Overview	$\mathbf{2}$
Spacecraft Constellation and Formation Overview	$\mathbf{2}$

Subtotal: 21
Attitude parameterizations 2
Attitude Kinematics 1
Attitude Dynamics 3
Attitude Stability (spin, dual-spin, 3-axis, gravity gradient) 4
Attitude control mechanisms 4
Attitude control of spinning and non-spinning spacecraft, yo-yo 2
Spacecraft attitude control design 2
Attitude sensors (rate gyros, sun sensors, star trackers, magnetometers) 3
Subtotal: 21
Midterm Exam and Quizzes (3 / +0)

