AE 8813 – Aerospace Propulsion Lab

Hours: 1-0-4-3

CATALOG DESCRIPTION (25 words or fewer):

Theory and application of common experimental and data analysis methods used in propulsion and combustion research; written and oral dissemination of experimental results.

PREREQUISITES:

None

TEXTBOOKS:

None: course notes will be provided.

COURSE OBJECTIVES:

To provide students understanding and experience with fundamental experimentation and data analysis techniques used in propulsion and combustion research.

LEARNING OUTCOMES:

Students successfully completing this course will be able to:

- 1. perform experiments in a safe manner;
- 2. use and create basic data acquisition tools in LabView to interact with experimental hardware (input/output systems), including capturing time-resolved data;
- 3. select appropriate hardware for experimental tasks related to flow metering, imaging, dynamic pressure systems, low-pressure plasmas, and pulsed lasers;
- 4. setup, operate, and calibrate common experimental systems and measurement devices;
- 5. properly document experimental conditions and acquired data;
- 6. analyze experimental data, conduct appropriate error analysis;
- 7. effectively report experimental findings in both written and oral forms;
- 8. work efficiently in teams to conduct experiments and report findings.

GRADING:

Lecture Attendance	10%
and Participation	
Assignments:	5%
Written Lab Reports:	75%
Oral Presentation:	10%

TOPICAL OUTLINE:

Introduction/Syllabus Presentation

Lab Safety and Laser Safety

Lab Best-Practices

- A. Documenting lab activities
- B. Using metadata in data acquisition and storage

Data Acquisition Systems and Software (Labview)

Experimental Uncertainty Analysis

Flow Metering and Control

- A. Orifice based devices (critical and subcritical(
- B. Coriolis meters

Imaging Systems

- A. Signal quantification and noise sources
- B. Spatial resolution and transfer functions

Dynamic Pressure Measurements

- A. Acquisition of time-resolved signals and frequency considerations
- B. Acoustic considerations and wave guides

Low-Pressure Plasmas and Spectroscopy

- A. Vacuum and high voltage systems
- B. Glow discharges
- C. Langmuir probes
- D. Spectrometers

Pulsed Lasers

- A. Laser operation
- B. Laser beam characteristics and beam forming optics
- C. Laser sheet formation and imaging of laser scattering