AE 6210 - Syllabus Advanced Dynamics - 3 Credits

General Information

Description

Kinematics of particles and rigid bodies, angular velocity, finite rotation, inertia properties, holonomic and nonholonomic constraints, equations of motion using Newton-Euler approach, Lagrange's equations, and Kane's approach.

Pre- &/or Co-Requisites

Any undergraduate course in dynamics.

Course Goals and Learning Outcomes

Upon successful completion of this course, you will be able to:

- 1. Derive equations of motion of particles
- 2. Differentiate vectors in different frames
- 3. Represent orientation of a body/frame in 3D
- 4. Derive kinematic equations that relate orientation, angular velocity and angular acceleration of bodies relative to one another
- 5. Derive kinematic equations that relate position, velocity, and acceleration of points on a rigid body
- 6. Calculate the mass moment of inertia matrix for a rigid body
- 7. Derive equations of motion for translation and rotation of rigid bodies under applied loads
- 8. Analyze and simulate equations of motion

Course Requirements & Grading

Note: Graded components of a course may vary with each offering. The example below is typical but subject to change.

Description of Graded Components

Your course grade will be based on weekly assignments including around 6 homework, 3 creative assignments, and 3 simulation/visualization assignments.

Grading Scale

Your final grade will be assigned as a letter grade according to the following scale:

Α	90-100%
В	80-89 %
С	70-79 %
D	60-69 %
F	0-59%

Topics Covered

Note: The exact topics covered in a course may vary with each offering. The example below is typical but subject to change.

- Differentiation of Vectors
- Particle Dynamics and Translational Equations of Motion
- Kinematics of Rigid Bodies
- Representing Orientation in 3D
- Holonomic and Nonholonomic Constraints and Constraint Forces
- Center of Mass and Moments/Products of Inertia
- Formulation of Equations of Motion using Newton-Euler Approach
- Formulation of Equations of Motion using Lagrange's Equations
- Formulation of Equations of Motion using Kane's Approach
- Numerical Simulation of System Dynamics

Course Materials

Note: Course materials may vary with each offering. The example below is typical but subject to change.

Textbook

No textbook required.

Suggested Reference: Roithmayr and Hodges, Dynamics: Theory and Application of Kane's Method, Cambridge University Press, 2016.

Course notes

Slides will be shared on Canvas before the lecture. Annotated slides will be shared after the class.